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Abstract: Parallel and sequential implementations of the Multi-sensor Joint Probabilistic 
Data Association (MSJPDA) tracking algorithm are analyzed and compared. The sequential 
implementation is shown to be exponentially less computationally complex as the number 
of sensors increases. Simulation results suggest that the sequential method also yields 
better tracking performance on the average. This is primarily due to the fact that better 
filtered estimates are available after processing each sensor's data. Thus, while sequential and 
parallel implementations are equivalent in multisensor filtering when no data association 
routine is needed, the sequential implementation gives superior tracking performance when 
data association is required. 
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1. INTRODUCTION 

 
The computational requirements for Kalman filtering in 
multisensor systems have been studied in (Speyer, 
1979; Willner, 1976). For linear systems, parallel and 
sequential Kalman filtering of measurements from 
multiple sensors are equivalent and optimum (Willner, 
1976). When multiple sensors are used for tracking the 
states of multiple objects in a cluttered environment, a 
data association process is often necessary to assign 
measurements to the objects they represent. When data 
association algorithms are used, the equivalence of 
parallel and sequential implementations no longer hold 
and it is not obvious which method would yield better 
tracking performance. We analyze both parallel and 
sequential implementation of a Multisensor Joint 
Probabilistic Data Association (MSJPDA) algorithm 
(Bar-Shalom, 1988; O’Neill, 1993), and we present 
simulation results showing the performance differences 
of the two implementations.  
 
 
2. MULTISENSOR MULTITARGET TRACKING 

 
The multisensor multitarget tracking problem is to 
track T targets in clutter with Ns sensors. Measure-
ments (also called reports or returns) from the sensors 
are received by a central processor at discrete time inter-

vals. Each measurement can originate from at most one 
target. Some sensors may not provide measurements at 
every interval. Some of the measurements arise from 
targets, and some arise from clutter; some targets may 
not yield any measurements at all in a particular time 
interval or for a particular sensor. Measurement errors 
due to measurements from one sensor are assumed to be 
independent of those from another sensor. The target 
dynamics and the measurements are assumed to obey 
the following linear equations: 
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where xt(k) (1 < t < T) denote the state vectors of each 
target t at the kth time interval, and          (1 < i < Ns) 
(1 ≤ l  ≤ Mi,k) denote the target originated measure-
ments at the kth interval. The matrices Ft(k), Gt(k) 
and Hi(k) are assumed to be known. Each wt(k) and 

)(kt
iv  is a zero mean Gaussian noise vector 

uncorrelated with all other noise vectors, and the 
covariance matrices of the noise vectors are known. 
The number of reports from each sensor i at the kth 
time interval is denoted by Mi,k. Assuming a pre-
correlation gating process is used to eliminate some of 
the returns (Bar-Shalom, 1988), let mi,k denote the 
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number of validated returns from sensor i at time k. For 
a given target t and sensor i, it is not known which 
measurement l (1 ≤ l  ≤ Mi,k) originates from the tar-
get. That is the problem of data association whereby it 
is necessary to determine which measurements originate 
from which targets. Let Zk denote the sequence of the 
first k observations. 
 
 

3. MULTISENSOR JPDA 
 
3.1 Single sensor JPDA  
 
We first recapitulate the JPDA algorithm for a single 
sensor since this gives us a basis to easily describe both 
the parallel and the sequential MSJPDA implementa-
tions. For single-sensor tracking, Ns = 1 and the goal is 
to associate the T targets with the m1,k measurements 
based on the current estimates of the target states 
and to update those estimates. The actual association 
being unknown, the conditional estimate is determined 
by taking a weighted average over all possible 
associations. For 1 ≤ t ≤ T and 0 ≤ l  ≤ m1,k let )(kk

lθ  
denote the event that return l is the true measurement 
from target t. The conditional probabilities )(kt

lβ  of the 
events )(kk

lθ  given Zk are then the association 
probabilities: 
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Let )(ˆ kkt
lx  denote the estimate of )(ˆ kktx  given by 

the Kalman filter on the basis of the previous estimate 
and the association of the tth target with the lth 
return: 
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where )11(ˆ)()1(ˆ −−=− kkkkk ttt xFx  is the prediction of 

)(ktx and Kt(k) is the filter gain for the tth target 
estimate. The conditional estimate )|(ˆ kktx  for )(ktx  
given Zk is  
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3.2 Parallel MSJPDA 
 
In this section, we review a parallel implementation of 
the MSJPDA algorithm (O’Neil, 1993; Pao, 1994), 
where all the measurements from all Ns sensors are 
taken into account in one pass through the multisensor 
data association and filtering routines (see Figure 1). 
For multisensor tracking, the T targets now have to be 
associated with the mi,k measurements for each of the 
Ns sensors.  
 

For 1 ≤ t ≤ T şi L = (l1, l2, … , lNs) where 0 ≤ l1 ≤ m1,k 
, …, 0 ≤ lNs ≤ mNs, k let )(kt

Lθ  denote the event that li 
is the true measurement from sensor i for the kth 
observation. Let )(kt

Lβ  denote the conditional 
probability of  )(kt

Lθ  given Zk . The desired 
multisensor event probability, )(kt

Lβ , is given by 
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where the )(, kt

ili
β  are just the single-sensor event prob-

abilities described above. The conditional estimates 
)(ˆ kktx   for the MSJPDA algorithm is given by 
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where the sum is over all possible sets of associations 
L with target t. The estimate )(ˆ kkt

Lx  of )(ktx  is 

based on the prediction )1(ˆ −kktx  and the association of 

the tth target with the set of L returns from the Ns 
sensors: 
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where )(kt

iK  is the filter gain for measurements from 
the ith sensor for a multisensor system. The covariance 
update corresponding to )(ˆ kkt

Lx  is computed by 
 

 
      (9) 

 
where )( kkt

LP  are covariances corresponding to )(ˆ kkt
Lx . 

 
 
3.3 Sequential MSJPDA 
 
Another way of implementing the MSJPDA algorithm is 
to process the measurements from each sensor one sen-
sor at the time, as shown in Figure 2. The measurements 
of a first sensor are used to compute a first intermediate 
state estimate )(ˆ1 kktx  and the corresponding covariance 

)(1 kktP  for each of the targets. The performed compu-
tation is equivalent to the one described for the single-
sensor case (section 3.1). The measurements of the next 
sensor are then used to further improve this intermedi-
ate state estimate, again using the single-sensor JPDA 
filter. If we let )(ˆ kkt

ix  and )( kkt
iP  denote the state es-

timate and covariance respectively after processing the 
data of the ith sensor, the update equations are 
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where )1(ˆ)(ˆ 0 −= kkkk tt xx and )(ˆ)(ˆ kkkk tt

Ns xx = . With 

)1()(0 −= kkkk tt PP  and )()( kkkk tt
Ns PP = , the update 

of the covariance matrices is 
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It is important to notice that the intermediate state 
estimates )(ˆ 1 kkt

i−x  and the covariances )(1 kkt
i−P  are 

used to compute the association probabilities t
ili ,β  for 

the ith sensor. These association probabilities still have 
the same meaning as for the parallel MSJPDA filter but 
they have different values. 
 

 
4. COMPUTATIONAL COMPLEXITY 

 
The computational complexity becomes important as 
the number of sensors and the clutter density grow.  An 
addition/subtraction and multiplication/division is 

counted as one operation. The variable sT denotes the 
number of elements in the target state vector and si 
denotes the size of the measurement vector of the ith 
sensor. In simplifying the expressions for 
approximating the operation counts, some terms were 
dropped for the following reasons. First, since we are 
trying to track targets in a cluttered environment, the 
number of measurements mi,k is assumed to be larger 
than the number of targets T. Second, mi,k is also 
assumed to be much greater than both sT and si. 
Finally, it is assumed that sensors are not capable of 
giving data for all the quantities of the target states, 
that is, si < sT. The computational complexity of both 
algorithms is equivalent except in the covariance 
update routines. The quantities mi,k grow linearly 
with λ (clutter density). Therefore the complexity for 
the sequential covariance update grows linearly with 
the number of sensors and the clutter density. 
However, in the parallel implementation, the 
computational complexity of the covariance update 
routine grows exponentially with the number of 
sensors and polynomially (power Ns) with the clutter 

Fig. 1. Parallel implementation of multisensor tracking algorithm 

Fig. 2. Sequential implementation of multisensor tracking algorithm. 



density. Thus, as the clutter density and the number 
of sensors increase, the sequential implementation 
becomes significantly more computationally efficient 
compared to the parallel implementation. 

 
Fig.3. Variation of the computational complexity 
with clutter density. 
 
For the Monte Carlo simulations to be presented in sec-
tion 5, Figure 3 shows how the average number of flops 
(floating-point operations) per cycle varies with clutter 
density. As the analytical comparison above suggests, 
the computational complexity increases with λ and is 
lower for the sequential MSJPDA algorithm.  
 
 

5. SIMULATION RESULTS 
 
I have run simulations comparing the parallel and se-
quential implementation of the MSJPDA algorithm de-
scribed in sections 3.2 and 3.3. Simulations have been 
run for the tracking of two targets. The configuration for 
these simulations are the same as in (Pao, 1993) with 
the exception that the noise covariances chosen here are 
r = q = 0.0144. Two measures of tracking performance 
are used: average RMS position error and average 
track lifetime (Salmond, 1990). The clutter density λ 
was varied from 0.2 to 1.0. The expected number of 
false measurements per gate, using steady-state 
Kalman filter covariances, varies then from 0.38 to 
1.92. 
 
To evaluate tracking performance, 100 Monte Carlo runs 
were performed for various values of A (indicated by the 
x's and o's in the figures). The algorithms were run until 
both tracks were lost. The track lifetimes were averaged 
over both targets and across all 100 runs, and the RMS 
position errors were averaged over all filter estimates 
(prior to track loss) of both targets and across all 100 
runs. 
 
Figure 4 shows the average track lifetimes for parallel 
and sequential implementations of the MSJPDA algo-
rithm as the clutter density is varied. As expected, the 
average track lifetimes decrease as the clutter density in-
creases. The figure also shows that, on the average, the 
sequential MSJPDA yields longer track lifetimes than 
the parallel MSJPDA implementation. 
 

Figure 5 presents similar results for the average RMS po-
sition errors. It is not surprising that the average 
RMS position errors increase as the clutter density 
increases. We also see that the average RMS position 
error is lower for the sequential implementation of the 
MSJPDA.In figure 5 results for additional runs λ = 10-10 
are also shown, and we see that the parallel and 
sequential results at λ = 10-10 are very close to each 
other. They lie slightly above the theoretical value for 
the steady state RMS of the equivalent Kalman filters 
under perfect data association (dash-dotted line); this 
is primarily due to the uncertain measurement 
association when there are multiple interfering targets 
rather than due to clutter. 
 

 
Fig.4. Variation of the track lifetime with clutter 
density. 
 

 
Fig.5. Variation of average position RMS with 
clutter density. 
 
A heuristic explanation of why the sequential 
implementation yields better performance is as 
follows. The parallel implementation uses the 
predicted measurements and covariances based on 
the state estimates and co-variances of the previous 
interval for data association and filtering of 
measurements from all sensors in the current interval, 
whereas the sequential implementation only uses this 
information for data association and filtering of 
measurements for the first sensor. After processing 
data from this first sensor, better estimates are 
available which are then used for data association and 
filtering of measurements from the next sensor. Thus, 
successively better estimates are used for data associa-
tion and filtering for each subsequent sensor. 
 



Because of the statistical nature of data association, the 
sequential implementation is better only in the average. 
A close comparison of the simulations run reveal that 
there are indeed a few runs where the parallel imple-
mentation yield better performance than the sequential 
implementation.  
 
 

6. CONCLUSIONS 
 
We have compared the performance and computational 
complexity of parallel and sequential implementations 
of the MSJPDA tracking algorithm. From simulation 
results, the performance (based on RMS position error 
and track lifetime metrics) of the sequential 
implementation is better on the average than the 
parallel implementation. Analytical and simulation 
results further show that the sequential implementation 
is increasingly more computationally efficient as the 
clutter density and number of sensors increase. 
 
For multiple sensors with different characteristics, it is 
necessary to investigate the order in which sensor 
information should be processed in the sequential 
implementation. (We bypassed this issue in the current 
study by using identical sensors in our simulations). 
Our conjecture is that using the "best" sensors first 
should lead to better performance as well as lower 
complexity, since this would yield better intermediate 
state estimates and smaller gate sizes for the processing 
of the measurements from the remaining sensors. 
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